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’ INTRODUCTION

Because of their importance in elementary steps of protein
folding, the formation of R-helices, β-hairpins, and loops has
recently attracted considerable attention,2�4 with ultrafast spec-
troscopic techniques making it possible to monitor the nanose-
cond to microsecond time scales for formation of these
fundamental units of structure.5�9 These rates can be used to
estimate the maximum rate at which proteins can fold, the so-
called folding “speed limit”,10 and can also be applied to para-
metrize statistical mechanics models that help to interpret
experiments.11,12 The general consensus in the literature is that
hairpins form on a microsecond time scale,5,13,14 loops in tens to
hundreds of nanoseconds,8,9,15,16 and helices in around 100 ns
to 1 μs10 (although one study has suggested a much slower
time scale17). The helix�coil transition in particular has served
as a prototypical example of a biomolecular ordering transition
and as such has received considerable attention from both
experimentalists1,7,17�26 and theorists.27�42 The kinetics of helix
formation can be complex to interpret due to the low coopera-
tivity of this process, leading to very different signals and kinetics
depending on the choice of molecule and experimental
probe.7,18,19,22,25,26,43 Despite this complexity, it has been possible
to interpret much of this data on the basis of nucleation�elonga-
tion models for helix�coil kinetics, in which nucleation by
formation of the first helical turn is followed by addition of helical
residues to the end of an existing helix.27,31,33,35 Most of the
relaxation experiments, however, are primarily sensitive to re-
equilibration processes between the helix and coil ensembles,35

with helix nucleation being only indirectly observed.

The recent development of an ultrafast temperature jump
instrument with picosecond time resolution44 has made it
possible to probe helix�coil kinetics in the pentapeptide Ac-
WAAAHþ-NH2 (hereafter W1H5). Since this peptide is barely
larger than a single helical turn, it has been argued to be an ideal
model for probing helix nucleation.1 Experiments onW1H5 were
designed such that the fluorescence of theN-terminal tryptophan
is quenched on contact with the C-terminal histidine when the
helix forms. The experimental signal was fitted by two exponen-
tial phases of roughly 0.8 and 5 ns at 300 K, remarkably 2 orders
of magnitude faster than any process previously measured for the
helix�coil transition; the two time scales were attributed to a
bifurcation of pathways for helix formation.1 A powerful method
for investigating the microscopic processes involved in helix
formation is molecular dynamics simulation, with increasingly
accurate all-atom energy functions (force fields).45�53 However,
appropriate benchmarking against experiment is critical to
validate the accuracy of the simulations.

Here, we embrace this task by examining helix nucleation in
the W1H5 peptide using all-atom molecular dynamics simula-
tions with explicit solvent. We use a version of the Amber ff03
force field54 optimized against helix�coil transition data,51 which
is essential for obtaining realistic equilibrium populations, in
conjunction with the highly optimized TIP4P/2005 water
model.55 In contrast to many water models often used in protein
simulations, TIP4P/2005 gives realistic values for the solvent
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time is estimated from our model to be 20�70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.
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viscosity and self-diffusion coefficient,55 important for quantitative
rate calculations. We determine the rates of helix formation in the
W1H5 peptide from long replica-exchange molecular dynamics
(REMD) trajectories using a recently developed master-equation
formalism.56,57 This type of method, in conjunction with an
appropriate model for the experimental signal, is ideally suited
to give microscopic insight via quantitative comparison with
macroscopic observables.58�66 The fluorescence decays from
simulated temperature jumps with our kinetic model are in
quantitative agreement with the experimentally determined re-
sults. Although the dynamics are multiphasic, the overall decay is
well-approximated by a double-exponential function.We find that
the major contributions to the relaxation come from C-terminal
shrinking of the helical states and a faster re-equilibration among
the coil states. Despite the overall fast relaxation times, we estimate
from our model that the time scale for helix nucleation (formation
of three consecutive helical residues) is 20�70 ns, depending on
the position in the sequence. This value is consistent with recent
experimental estimates of the helix nucleation time.

’METHODS

Atomistic Molecular Dynamics Simulations. We have run
simulations of the N-terminally acetylated and C-terminally amidated
W1H5 peptide (including protonated histidine) with 790 explicit water
molecules in a truncated octahedral box with 25.8 Å distance between
closest walls. OneCl� ionwas added tomaintain electroneutrality.Weuse
the Amber ff03w force field51 for the peptide and the TIP4P/2005 model
for water.55 Long-range electrostatics were treated with the particle-mesh
Ewald method, using a real-space cutoff of 0.9 nm and a grid spacing
0.1 nm. Lennard-Jones terms were truncated at 1.4 nm, and a multiple
time step method was used for atom pairs between 0.9 and 1.4 nm.
Determining accurate equilibrium populations in explicit solvent simula-
tions is a challenging task, even for short peptides.49We therefore use 300
ns of REMDsimulations, as implemented in theGromacs 4.5.1 simulation
package,67 with 32 replicas spanning the temperature range of 270�600
K, and replica swaps attempted every 10 ps. A short constant pressure run
at 300 K was used to estimate the equilibrium average volume at this
temperature. Its final configuration, with the peptide being in state hhccc
(described below), was used to initialize the subsequent constant-volume
REMD runs. A leapfrog-type integrator was used to propagate Langevin
dynamics68 with a 2 fs time step and a friction of 1 ps�1.

’RESULTS AND DISCUSSION

Helix�Coil Equilibrium. In Figure 1 we show Ramachandran
potentials of mean force for the different residues in this peptide,
close to room temperature (T = 302 K), showing the location of
the populated helical and extended regions. There are significant
differences between the free energy surfaces for the N-terminal
tryptophan, the central alanines, and the C-terminal histidine,
due to the combined effects of intrinsic helix propensity, helix
capping, and steric hindrance. We find that∼50 ns is needed for
the REMD simulations to equilibrate (see Supporting Informa-
tion (SI)), and so we use only the last 250 ns at each temperature
for subsequent analysis. To monitor the helix�coil equilibrium,
we calculate the fraction of helix, Æhæsim, from the fraction of
time spent by each residue within helical segments,48 defined as
sequences of three or more consecutive helical residues (see
Figure 1B). As observed for the (AAQAA)3 peptide, we find that
there is a sharp change in Æhæsim at low temperature arising from
the enhanced cooperativity of the peptide with the Amber03w
force field.51We have fitted the equilibrium distribution of helical

configurations to a Lifson�Roig model69 using a Bayesian pro-
cedure, with the likelihood of the observed configurations i being
L =ΠiF(i), where F(i) is the equilibrium probability of i given by
the Lifson�Roig partition function. As in earlier work,48,51 we fit
independent Lifson�Roig parameters w(T) and v(T) at each
temperature T. We sample the posterior distribution of w,v
assuming a uniform prior, using Metropolis Monte Carlo as
described before.48 The fit (Figure 1B) produces elongation (w)
and nucleation (v) parameters comparable in both magnitude
and temperature dependence to those obtained previously from
simulations of longer peptides48,51 (see SI for further details).

Figure 1. Thermodynamics of the W1H5 peptide. (A) Ramachandran
potential of mean force (PMF) for the amino acid types present in the
W1H5 peptide at 300 K. Rectangles in dark green and red in the alanine
PMF mark, respectively, the regions corresponding to the helix [(�100
<Φ <�30), (�50 <Ψ < 10)] and coil [(�180 <Φ <�40), (120 <Ψ
< 180)] states used in the transition-based assignment. Color contours
represent 0.5RT energy changes. (B) Fraction of helix for the W1H5

peptide from the time spent by each residue in helical Ramachandran
angles. The red line is a fit to the Lifson�Roig model. (C)Overlay of the
fraction helix and experimental CD signal. Note that the Lifson�Roig
model is fit independently to the distribution of conformations at each
temperature as described in ref 48.
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While quantitative calculation of ellipticity from simulation is a
challenging problem beyond the scope of this paper,70,71 we note that
the values of Æhæsim can be overlaid on the experimental far-UV CD
data that probes helix populations (see Figure 1C).This suggests good
agreement between the folding thermodynamics of W1H5 in our
simulations, previous work with the refined force fields, and experi-
mental data (see also below for comparison with fluorescence data).
Dynamics of Helix Formation. Although REMD is usually

employed as a thermodynamic sampling method only, kinetic
information may be inferred from the short trajectory segments
between exchanges. We use the method developed by Buchete
and Hummer to determine the helix�coil dynamics in a coarse-
grained state space,56,57 summarized briefly here. After subdivid-
ing a system into N coarse states, if the dynamics between these
states can be considered Markovian (i.e., memory-less), the time
evolution of the coarse states can be represented in the form of a
master equation dPi(t)/dt = ∑j=1

N kijPj(t) or, in vector-matrix
notation, dP(t)/dt = KP(t). Here Pi(t) is the population of state
i at time t, and kij are the elements of the transition rate matrix,
defined as kijg 0 for i 6¼ j and kii =�∑j6¼ikji for diagonal elements.
For the W1H5 peptide we partition the conformational space in
terms of Ramachandran dihedral angles (Φ,Ψ) (see Figure 1A)
allowing for two possible states—helix and coil—for each
residue, yielding a total of 32 (i.e., 25) coarse states in the system.
Instead of assigning states considering only the instantaneous
values of Φ and Ψ, we use the context of the simulation
trajectory to aid in the assignment of true transitions: the alpha
and extended regions are tightly defined (Figure 1A), and a
transition from one to the other is only counted once the
trajectory crosses completely into the product state56 (see
Figure 2A). In this way we suppress the counting of barrier
recrossings as events.56,72 After assigning the transitions for all
residues in the pentapeptide, we obtain the number of transitions
Nij from j to i for each pair of coarse states i,j (see Figure 2B) after
a given, fixed lag time Δt. The state assignment is done on the

continuous REMD simulation trajectories obtained by following
the replicas through temperature space, with the observed
transitions being assigned to the temperature at which they
occur (see Figure 2B).57 We use the transition count matrix with
elements Nij(T) to optimize the rate matrix by maximizing the
likelihood, defined as L = ∑i=1

N ∑j=1
N [p(i,Δt|j,0)]Nij. In this equa-

tion the propagator p(i,Δt|j,0) is the probability of being in state i
at time Δt after being in state j, which can be obtained directly
from the rate matrix exponential as (exp[KΔt])ij.

56 For the
optimization we run several cycles of simulated annealing Monte
Carlo, with the pseudo-energy function being �ln L and the
simulated annealing “temperature” slowly decreasing to zero.
The floating parameters in the search are the equilibrium
populations and half the nondiagonal elements of the rate matrix,
the remainder being determined by detailed balance.73

In Figure 3A we show the equilibrium populations at experi-
mentally relevant temperatures, which can be obtained either

Figure 2. Transition-based assignment of helix�coil states. (A) Time
series illustrating the assignment of the Ψ Ramachandran angle for a
single amino acid residue (circles) to helix and coil conformational states
(green line). The gray areas mark the regions corresponding to the helix
and coil states. (B) Time series illustrating the transition-based assign-
ment of protein conformations while the system diffuses through state
(top) and temperature space (bottom).

Figure 3. Results from maximum likelihood optimization of rate
matrices. (A) Equilibrium population of the 32 states in the Markov
model from the likelihood maximization at experimentally relevant
temperatures. Error bars are calculated from bootstrap tests.
(B) Eigenvalue spectrum at temperatures closest to the final tempera-
tures in the temperature jump experiments. Inset: temperature depen-
dence of the relaxation times for the slowest modes of the system.
(C) Depedence of first five nonzero eigenvalues on lag time.
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from the raw simulation data or from the stationary mode of the
optimized rate matrix. Because of the size of the peptide, the
predominant states are nonhelical even at low temperatures.
Interestingly, we find that the most populated helical state is
hhhhc rather than hhhhh; this may be explained by the low helix
propensity of protonated histidine, as well as by stronger inter-
actions between tryptophan and histidine side chains in hhhhc in
comparison with hhhhh (see SI). Evidence for this is that the
distribution of side-chain distances for these two residues is
shifted to smaller distances in hhhhc relative to hhhhh, and the
fact that the effect is not seen in long simulations of Ala5 with
the same force field. As expected, we see that the population of
the most significant helical states (hhhhh, hhhhc, and hhhcc)
decreases upon raising the temperature, while nonhelical states
become more populated. This microscopic picture is consistent
with the global trends shown in Figure 1. Despite the extensive
sampling in our REMD simulations, with an aggregate time of
almost 10 μs, we find that some rare states are not populated at
low temperatures. These correspond to “broken” helices (i.e.,
hhchh or hchhh) which are highly disfavored in short peptides, or
states where the helix propagates from the C-terminus (i.e.,
chhhh), which are unlikely due to the strong “capping” effect of
the acetyl group and low helix propensity of protonated histidine.
Although REMD ensures that the relative equilibrium popula-
tions of the different states should be accurate at all temperatures,
direct determination of the rate matrix requires all relevant
transitions to occur at each temperature of interest. We find at
temperatures lower than 300 K that this condition is not satisfied,
and some rare states become “disconnected” in the transition
matrix. While this could be overcome by assuming a function
(e.g., Arrhenius) kij(T) for the rates, in this work one of our goals
was to determine how the rates varied with temperature, so we
did not enforce any particular temperature dependence. For
temperatures above 300 K, we can obtain the fast and slowmodes
of the system from the eigenvalue spectrum of the rate
matrix.56,57 In Figure 3B we show the temperature dependence
of the relaxation times for the slowest modes of the system.While
there is a 4�5-fold difference between the second and third
eigenmodes, the time scales for the next slowest modes are
grouped quite closely together, a point to which we return below.
When constructing Markov models for dynamics, such as the

master equation model we use here, it is important to test
whether non-Markovian “memory” effects have been eliminated.
This can be assessed from the dependence of the eigenvalues of
the inferred rate matrix K on the lag time Δt used in its
construction: for sufficiently long Δt, the rate matrix and its
eigenvalues should become independent of the lag time.56,57 A
similar eigenvalue criterion is used to assess the convergence
of the closely related transitionmatrices,T(Δt) = exp[KΔt], with
lagΔt.58,60,62 In Figure 3Cwe show that the slowest modes in our
kinetic model are independent of Δt, supporting the previous
observation that the context-based assignment efficiently
removes non-Markovian effects in the dynamics, even for very
short lags.56,57

Microscopic Rates of Nucleation and Elongation.The rates
estimated in our master equation use a finer description of states
than commonly employed in modeling helix�coil kinetics, in
which helix formation is typically described by a “nucleation”
step, comprising the formation of a complete helical turn,
followed by “elongation” steps in which additional residues are
added to the helix. To map our results onto these more familiar
processes, we can compute a “nucleation” rate, i.e., the rate for

formation of a helix nucleus (first helical turn) at a given point in
the sequence. Note that for longer helices this will differ
significantly from the rate for nucleating a helix at a specific
location in the sequence. We estimate this from the total rate for
conversion of coil states to a particular helix nucleus as knuc =
∑j∈coil pjkij/∑j∈coil pj, where state i is a particular helix nucleus and
the states j are members of the “coil” ensemble (i.e., not
containing any helical segments); the rate of the reverse process
k�nuc is given by k�nuc = ∑j∈coil kji. We define a helix nucleus to
consist of three consecutive residues assigned as helical using the
context-based assignment, surrounded by coil (e.g., ..chhhc..,
hhhc.., etc.). The rates of nucleation are shown in Figure 4A as
a function of temperature for the three possible nuclei in this
peptide. We estimate a nucleation time of τnuc = 1/knuc≈ 20�70
ns for a three-residue nucleus at 300 K, with nucleation at the
center being slower than at the ends.
This rate is considerably slower than previous estimates based

on molecular simulations, typically of the order 0.1�1 ns.27,30

However, this is most likely due to the strong bias toward helical
conformations in many older force fields,47 reducing the nuclea-
tion barrier; even more recent force fields can result in signifi-
cant differences in dynamics.42 Estimates of nucleation times
from experiment vary widely, partly because they are not
probed directly, as mentioned above. On the basis of fitted
helix elongation (or “zipping”) rates of kel ≈ 2.9 � 108 s�1 in
temperature jump experiments on alanine-based peptides,20 a
nucleation time of between 140 ns and 2.0 μs can be estimated,
depending on the value of the nucleation parameter σ chosen
(0.025 to 0.0017),74 since knuc = σkel in the commonly used
microscopic model of helix kinetics due to Schwarz.75 A slightly
faster elongation rate of ∼1.3 � 109 s�1, estimated from later

Figure 4. Rate coefficients for (A) helix nucleation and (B) helix
elongation. Forward rates and reverse rates from the optimized rate
matrices are shown as full and empty circles, respectively. Lines
represent fits to an Arrhenius law.
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experiments with a Trp-His quenching pair,7 would give esti-
mates for the nucleation time of 30�450 ns with the same range
of σ. Amore recent study based on triplet�triplet energy transfer
between xanthone and naphthylalanine used a nucleation time
of 7.94 μs (1/k3 in that work) to interpret their data,26 and
temperature jump studies of a helical peptide stabilized by side-
chain salt bridges have also suggested a slower time scale.43 A
temperature jump experiment on helix formation from a cold
unfolded state has also been used to probe the nucleation time,
estimating a value of 300 ns.23 Our calculated nucleation times
are therefore within the range of previous experimental values,
although still at the lower end. Possible reasons for the slightly
accelerated nucleation rate are the stabilization of the helical state
by the favorable interaction of the Trp-His pair7 and the effects of
helix capping,24 which may lower the barrier relative to nuclea-
tion in the center of a longer peptide.
We can also estimate time constants for adding a single residue

to a helix directly from our rate matrices. The helix elongation
rates at 300 K are in the range of (0.6�2) � 109 s�1, consistent
with the experimental estimates given above (see Figure 4B). We
find that the temperature dependence of helix nucleation and
elongation processes can be reasonably fit to an Arrhenius form,
with only small deviations at low temperatures—this is most
likely the result of the master equation being less well determined
at these temperatures due to the fewer transitions. The Arrhenius
approximation will be useful if this formalism is to be adapted for
longer helical peptides.56,73

Comparison with Contact-Based Fluorescence Quench-
ing.To validate the dynamics in our simulations, we compare our
kinetic model with the ultrafast kinetic experiments on theW1H5

peptide previously reported.1 As a probe for helix nucleation
upon temperature jumps they measured the tryptophan fluores-
cence in the 310�500 nm window. To interpret the results they
assumed that tryptophan and histidine interact (resulting in
quenching of fluorescence) only when the entire peptide adopts
helical Ramachandran angles. Since in the simulations we can
directly monitor interactions between the Trp andHis, we do not
predetermine which states are quenched, but instead we com-
pute a “quantum yield” for each state (Φs) using a simple
approximation, relative to the situation where the His is absent.
We assume that when the minimum Trp-His distance in a given
conformation is smaller than a cutoff distance (rcut), the fluor-
escence is completely quenched; otherwise, it is completely
unquenched. Thus, the simulated quantum yield for each state
is calculated as Φs =

R
rcut
¥ p(rWH|s) drWH, where p(rWH|s) is

the probability density for the minimum interatomic Trp-His
distance (rWH) given that the peptide is in state s. Here we
compute Φ using rcut = 4 Å from data at all temperatures to
guarantee extensive sampling of the distances for each state. We
note, however, that the estimate of the simulated quantum yield
is robust and, for a short peptide like W1H5, the results do not
depend significantly of the range of temperatures from which
conformations are drawn or the choice of the cutoff distance (see
SI). Our choice of a simple cutoff to define quenched configura-
tions is motivated by the short-range nature of the quenching of
the tryptophan by histidine and is the approximation that is most
often used to interpret experiments. However, we have also
considered an explicitly distance-dependent quenching rate,
k(r) = k1 exp[�(r� a)/b], motivated by the evidence that
histidine quenches the tryptophan singlet excited state by an
electron-transfer mechanism.7,76 In this rate expression, k1 is a
prefactor, a is the distance of closest approach (contact), and b is

the range of quenching. We also consider that the quantum yield
relative to that in the absence of the quencher will depend on the
dynamics within each helical state. We find that, for reasonable
choices of the parameters k1, a, and b, and in both extremes of fast
and slow intrastate sampling, we obtain results comparable to
those obtained with the simple cutoff (see SI).
In Figure 5 we show the probability density p(rWH|s) for three

representative states (see also the signal for each of the 32 coarse
states in Figure 6E). In good accord with the experimental
design, most of the coil-like states populate long Trp-His
distances, while the more helical states cluster at distances close
to the cutoff. However, we find that some nonhelical states are
significantly “quenched” (see SI), stressing the importance of a
detailed simulation of the experimental probes. Comparison of
our simulated quantum yield with experiment is complicated by
the strong temperature dependence of the tryptophan quantum
yield in the absence of histidine, due to the range of other
processes which can quench the fluorescence. We correct for this
empirically, by scaling our relative quantum yield by the mea-
sured quantum yield of suitable reference molecules lacking
histidine, measured by Thompson et al.7 The first reference
is N-acetyl-L-tryptophanamide (NATA), and the second is the
WAAA control peptide (see Figure 5B). We find that the

Figure 5. Simulation of the tryptophan fluorescence signal. (A) Prob-
ability density functions of the minimum distance between His and Trp
for three representative states of the system. The dashed cyan line shows
the cutoff distance for fluorescence quenching. (B) Comparison be-
tween experimental W1H5 fluorescence quantum yield (green circles)7

and our estimates (full red and blue circles, respectively). These
estimates are derived respectively by scaling the temperature-dependent
fluorescence quantum yield of NATA (red triangles) and WAAA (blue
diamonds)—representing the quantum yield of the Trp in the absence
of the quenching His—by the relative quantum yield determined from
the simulations.



6814 dx.doi.org/10.1021/ja200834s |J. Am. Chem. Soc. 2011, 133, 6809–6816

Journal of the American Chemical Society ARTICLE

calculated fluorescence quantum yield from simulations com-
pares extremely well with the experimental measurements for
WAAAHþ,7 particularly when the more realistic WAAA peptide
is used as reference.
Simulated Temperature Jumps. We can use the optimized

rate matrices and the calculated fluorescence vector to simulate
temperature jumps as in the experiments on W1H5.

1 Here, we
exploit the fact that, from the REMD simulations, we know both
equilibrium populations and a master equation describing the
dynamics at each temperature. For a temperature jump with
initial and final temperatures T1 and T2, respectively, the
population of each state at time t can be obtained from the
matrix exponential:

PðtÞ ¼ expðKðT2ÞtÞPeqðT1Þ

¼ ∑
N

n¼ 1
ðΨR

n ½ΨL
n 3PeqðT1Þ� eλntÞ ð1Þ

Here, Ψn
R, Ψn

L, and λn are the right and left eigenvectors and
eigenvalues, respectively, of K(T2). The simulated fluorescence
signal is then obtained straightforwardly as F(t) =Φ 3P(t); in the
following we use this relative quantum yield without scaling it
using the intrinsic fluorescence of the WAAA peptide, since that
would not alter the observed rates or relative amplitudes. We
simulate temperature jumps for three final temperatures very

close to those in the experiments (see Table 1).1 We use the
maximum likelihood ratematrices at these final temperatures and
the calculated quantum yield as described above. To maximize
the amplitudes we jump from populations at temperatures ∼30
K lower, instead of the ∼10 K jumps in the experiments (note,
however, that comparable results are obtained with smaller
temperature jumps, see SI). In all cases we find that the response
to the simulated temperature jumps is an increase in the
fluorescence corresponding to the decrease in the population

Figure 6. Simulation of the fluorescence quenching temperature jump experiments. (A) Top: change in the calculated fluorescence quantum yield from
jumps with T1 = 290 K and T2 = 323 K. Red and green lines show fits to single and double exponentials. Bottom: residuals from fits. (B) Contribution to
the calculated fluorescence signal for all the states in theMarkov state model. In color we show some states whose contributions are especially important
for the increase and decrease of the global signal. Dashed vertical lines in (A) and (B) mark the time scales corresponding to the modes that contribute
with largest amplitudes to the signal. (C) States whose population changes most significantly upon temperature jumps, with colors as highlighted in (B).
(D) Amplitude of the signal contributed by each of the eigenmodes. (E) Signal vector with the relative quantum yield of each of the states calculated
using a simple cutoff. (F) Right eigenvectors of the eigenmodes contributing most to the signal change. Colors correspond to those of the dashed lines in
(A) and (B).

Table 1. Double-Exponential Fits to the Simulated Fluores-
cence Decaya

simulation experiment

T1 (K) T2 (K) A1 (%) τ1 (ns) τ2 (ns) τ1 (ns) τ2 (ns)

270 302 6.9 (2.1) 0.32 (0.09) 21.0 (3.7) 0.85 5.3

280 312 26 (13) 1.3 (1.2) 5.2 (1.1) 0.65 4.7

290 323 21 (8) 0.76 (0.28) 7.2 (0.8) 0.45 3.6
aData correspond to∼30K jumps to the final temperatures (T2) shown.
At each temperature, we give the relaxation times and relative amplitude
of the fast phase (A1) from a double-exponential fit. The errors,
corresponding to standard deviations from bootstrap tests, are shown
in parentheses. Note that the final temperatures for the experiments
were 300 and 310 K, rather than 302 and 312 K, respectively.
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of helical states and an increase in the population of coil states
(see Figure 6). The transients compare very well with those
obtained in the experiments and can be fitted to double-
exponential traces with positive amplitudes (see Table 1). At
312 and 323 K the rates for the two phases are in good agreement
with those obtained by Mohammed et al.,1 while at 302 K the
fitted relaxations are slower, most likely related to the master
equation being less well determined at these lowest tempera-
tures, as discussed above.
In addition to reproducing the same macroscopic behavior

observed in the ultrafast kinetic experiments from the simulated
temperature jumps, we can use our model to propose an
explanation for the microscopic origin of the observed signals.
In Figure 6B we show the changes in the populations upon
temperature jumps for each state n in the kinetic model that
contributes to the signal as ΦnPn(t). We see that the species
whose population changes most upon the temperature jumps are
the fully coil state, ccccc, and the helices hhhhc and hhhcc (see
Figure 6C), consistent with the differences in the equilibrium
populations of initial and final states (see Figure 3A). As can be
observed, although the global fluorescence can be explained
using a double exponential, we see that the origin of the signal
is actually multiphasic.
We study this in more detail by looking at the contributions of

the individual eigenmodes, whose amplitude can be calculated
from the signal vectorΦ, the initial population Peq(T1), and the
right and left eigenvectors for the rate matrix K(T2). We can
rewrite the expression for the population of all species at each
time t as P(t) = Peq(T2)þ ∑n=2

N Ψn
R[Ψn

L
3Peq(T1)] e

λnt. Each term
in this sum corresponds to the perturbation from the final
population contributed by each mode of the rate matrix. There-
fore, we can calculate the actual amplitude contributed by the nth
mode as Fn = [Φ 3Ψn

R][Ψn
L
3 Peq(T1)] (see Figure 6D). We note

that these calculated amplitudes are analogous to what others
have termed “dynamical fingerprints”.66 We see that the largest
amplitude corresponds to the slowest mode of the system λ2 but
that many others contribute to the overall signal. This multi-
modality, however, is not discernible in the macroscopic signal
due to the close spacing of time scales for the remaining
eigenmodes. For the modes with the largest amplitudes Fn, we
show the right eigenvectorsΨn

R, reflecting the change in popula-
tion accounted for by mode n56 (see Figure 6F). We see that the
slower modes explain the observed shrinking of helical states at
the C-terminus and an increase in the population of coil states,
while the faster modes determine the interconversion of states
within the nonhelical “coil” ensemble. Importantly, although the
overall signal change is positive, we find that some of the minor
modes contribute a negative component to the overall amplitude
(i.e., populating more strongly quenched species).
Therefore, from the analysis of our kinetic model, we find

that the origin of the observed phases does not appear to be
separate collapse and folding of the helix, as originally proposed.1

Rather, we suggest that these experiments represent the first
direct measurement of helix melting and coil dynamics, with
time scales which were inaccessible to earlier temperature jump
methods.

’CONCLUSIONS

Here we show that, using molecular dynamics simulations, we
can explain the origin of the macroscopic signals observed in
equilibrium and kinetic experiments in microscopic detail. A key

feature of our study is the use of a protein energy function
optimized for peptide folding,51 together with a model for water
that accurately reproduces its density and viscosity.55 By careful
analysis of the resulting dynamics and explicit modeling of
the experimental probe, we obtain results that are in excellent
agreement with equilibrium and kinetic data for the W1H5

pentapeptide from different sources1,7 and reveal the hidden
complexity in the dynamics of this simple molecule. The fast
phase in our model appears to arise from equilibration between
different states in the coil ensemble, while the slow phase comes
from C-terminal melting of helical states. We also relate our
results to kinetic parameters commonly used in “zipper”-type
models for helix�coil kinetics, finding reasonable agreement
with those obtained experimentally. From our kinetic model we
are able to determine directly the time scales of helix nucleation
and elongation as 20�70 ns and ∼1 ns, respectively, in good
accord with previous experimental estimates. In the future it
will obviously be important to extend our study to longer helices,
in particular the 21-residue helices based on the sequence
Ac-AAAAA-(AAARA)3A-NH2, which have been used in very
different experimental approaches to determine helix formation
kinetics7,26 The observed relaxation rates in these systems are
generally much slower (100 ns time scale) and will therefore
represent a distinct test of our simulation model; using a longer
peptide will also mitigate the boundary effects inherent in the
present peptide model.
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